import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from .que_base_model import QueBaseModel,QueEmb
from torch.distributions import Categorical
from .iekt_utils import mygru,funcs
from pykt.utils import debug_print
[docs]class IEKTNet(nn.Module):
def __init__(self, num_q,num_c,emb_size,max_concepts,lamb=40,n_layer=1,cog_levels=10,acq_levels=10,dropout=0,gamma=0.93, emb_type='qc_merge', emb_path="", pretrain_dim=768,device='cpu'):
super().__init__()
self.model_name = "iekt"
self.emb_size = emb_size
self.concept_num = num_c
self.max_concept = max_concepts
self.device = device
self.emb_type = emb_type
self.predictor = funcs(n_layer, emb_size * 5, 1, dropout)
self.cog_matrix = nn.Parameter(torch.randn(cog_levels, emb_size * 2).to(self.device), requires_grad=True)
self.acq_matrix = nn.Parameter(torch.randn(acq_levels, emb_size * 2).to(self.device), requires_grad=True)
self.select_preemb = funcs(n_layer, emb_size * 3, cog_levels, dropout)#MLP
self.checker_emb = funcs(n_layer, emb_size * 12, acq_levels, dropout)
self.prob_emb = nn.Parameter(torch.randn(num_q, emb_size).to(self.device), requires_grad=True)#题目表征
self.gamma = gamma
self.lamb = lamb
self.gru_h = mygru(0, emb_size * 4, emb_size)
self.concept_emb = nn.Parameter(torch.randn(self.concept_num, emb_size).to(self.device), requires_grad=True)#知识点表征
self.sigmoid = torch.nn.Sigmoid()
self.que_emb = QueEmb(num_q=num_q,num_c=num_c,emb_size=emb_size,emb_type=self.emb_type,model_name=self.model_name,device=device,
emb_path=emb_path,pretrain_dim=pretrain_dim)
[docs] def get_ques_representation(self, q, c):
"""Get question representation equation 3
Args:
q (_type_): question ids
c (_type_): concept ids
Returns:
_type_: _description_
"""
v = self.que_emb(q,c)
return v
[docs] def pi_cog_func(self, x, softmax_dim = 1):
return F.softmax(self.select_preemb(x), dim = softmax_dim)
[docs] def obtain_v(self, q, c, h, x, emb):
"""_summary_
Args:
q (_type_): _description_
c (_type_): _description_
h (_type_): _description_
x (_type_): _description_
emb (_type_): m_t
Returns:
_type_: _description_
"""
#debug_print("start",fuc_name='obtain_v')
v = self.get_ques_representation(q,c)
predict_x = torch.cat([h, v], dim = 1)#equation4
h_v = torch.cat([h, v], dim = 1)#equation4 为啥要计算两次?
prob = self.predictor(torch.cat([
predict_x, emb
], dim = 1))#equation7
return h_v, v, prob, x
[docs] def update_state(self, h, v, emb, operate):
"""_summary_
Args:
h (_type_): rnn的h
v (_type_): question 表示
emb (_type_): s_t knowledge acquistion sensitivity
operate (_type_): label
Returns:
next_p_state {}: _description_
"""
#equation 13
v_cat = torch.cat([
v.mul(operate.repeat(1, self.emb_size * 2)),
v.mul((1 - operate).repeat(1, self.emb_size * 2))], dim = 1)#v_t扩展,分别对应正确的错误的情况
e_cat = torch.cat([
emb.mul((1-operate).repeat(1, self.emb_size * 2)),
emb.mul((operate).repeat(1, self.emb_size * 2))], dim = 1)# s_t 扩展,分别对应正确的错误的情况
inputs = v_cat + e_cat#起到concat作用
h_t_next = self.gru_h(inputs, h)#equation14
return h_t_next
[docs] def pi_sens_func(self, x, softmax_dim = 1):
return F.softmax(self.checker_emb(x), dim = softmax_dim)
[docs]class IEKT(QueBaseModel):
def __init__(self, num_q,num_c,emb_size,max_concepts,lamb=40,n_layer=1,cog_levels=10,acq_levels=10,dropout=0,gamma=0.93, emb_type='qid', emb_path="", pretrain_dim=768,device='cpu',seed=0):
model_name = "iekt"
super().__init__(model_name=model_name,emb_type=emb_type,emb_path=emb_path,pretrain_dim=pretrain_dim,device=device,seed=seed)
self.model = IEKTNet(num_q=num_q,num_c=num_c,lamb=lamb,emb_size=emb_size,max_concepts=max_concepts,n_layer=n_layer,cog_levels=cog_levels,acq_levels=acq_levels,dropout=dropout,gamma=gamma, emb_type=emb_type, emb_path=emb_path, pretrain_dim=pretrain_dim,device=device)
self.model = self.model.to(device)
# self.step = 0
[docs] def train_one_step(self,data,process=True):
# self.step+=1
# debug_print(f"step is {self.step},data is {data}","train_one_step")
# debug_print(f"step is {self.step}","train_one_step")
BCELoss = torch.nn.BCEWithLogitsLoss()
data_new,emb_action_list,p_action_list,states_list,pre_state_list,reward_list,predict_list,ground_truth_list = self.predict_one_step(data,return_details=True,process=process)
data_len = data_new['cc'].shape[0]
seq_len = data_new['cc'].shape[1]
#以下是强化学习部分内容
seq_num = torch.where(data['qseqs']!=0,1,0).sum(axis=-1)+1
emb_action_tensor = torch.stack(emb_action_list, dim = 1)
p_action_tensor = torch.stack(p_action_list, dim = 1)
state_tensor = torch.stack(states_list, dim = 1)
pre_state_tensor = torch.stack(pre_state_list, dim = 1)
reward_tensor = torch.stack(reward_list, dim = 1).float() / (seq_num.unsqueeze(-1).repeat(1, seq_len)).float()#equation15
logits_tensor = torch.stack(predict_list, dim = 1)
ground_truth_tensor = torch.stack(ground_truth_list, dim = 1)
loss = []
tracat_logits = []
tracat_ground_truth = []
for i in range(0, data_len):
this_seq_len = seq_num[i]
this_reward_list = reward_tensor[i]
this_cog_state = torch.cat([pre_state_tensor[i][0: this_seq_len],
torch.zeros(1, pre_state_tensor[i][0].size()[0]).to(self.device)
], dim = 0)
this_sens_state = torch.cat([state_tensor[i][0: this_seq_len],
torch.zeros(1, state_tensor[i][0].size()[0]).to(self.device)
], dim = 0)
td_target_cog = this_reward_list[0: this_seq_len].unsqueeze(1)
delta_cog = td_target_cog
delta_cog = delta_cog.detach().cpu().numpy()
td_target_sens = this_reward_list[0: this_seq_len].unsqueeze(1)
delta_sens = td_target_sens
delta_sens = delta_sens.detach().cpu().numpy()
advantage_lst_cog = []
advantage = 0.0
for delta_t in delta_cog[::-1]:
advantage = self.model.gamma * advantage + delta_t[0]#equation17
advantage_lst_cog.append([advantage])
advantage_lst_cog.reverse()
advantage_cog = torch.tensor(advantage_lst_cog, dtype=torch.float).to(self.device)
pi_cog = self.model.pi_cog_func(this_cog_state[:-1])
pi_a_cog = pi_cog.gather(1,p_action_tensor[i][0: this_seq_len].unsqueeze(1))
loss_cog = -torch.log(pi_a_cog) * advantage_cog#equation16
loss.append(torch.sum(loss_cog))
advantage_lst_sens = []
advantage = 0.0
for delta_t in delta_sens[::-1]:
# advantage = args.gamma * args.beta * advantage + delta_t[0]
advantage = self.model.gamma * advantage + delta_t[0]
advantage_lst_sens.append([advantage])
advantage_lst_sens.reverse()
advantage_sens = torch.tensor(advantage_lst_sens, dtype=torch.float).to(self.device)
pi_sens = self.model.pi_sens_func(this_sens_state[:-1])
pi_a_sens = pi_sens.gather(1,emb_action_tensor[i][0: this_seq_len].unsqueeze(1))
loss_sens = - torch.log(pi_a_sens) * advantage_sens#equation18
loss.append(torch.sum(loss_sens))
this_prob = logits_tensor[i][0: this_seq_len]
this_groud_truth = ground_truth_tensor[i][0: this_seq_len]
tracat_logits.append(this_prob)
tracat_ground_truth.append(this_groud_truth)
bce = BCELoss(torch.cat(tracat_logits, dim = 0), torch.cat(tracat_ground_truth, dim = 0))
y = torch.cat(tracat_logits, dim = 0)
label_len = torch.cat(tracat_ground_truth, dim = 0).size()[0]
loss_l = sum(loss)
loss = self.model.lamb * (loss_l / label_len) + bce#equation21
return y,loss
[docs] def predict_one_step(self,data,return_details=False,process=True):
sigmoid_func = torch.nn.Sigmoid()
data_new = self.batch_to_device(data,process)
data_len = data_new['cc'].shape[0]
seq_len = data_new['cc'].shape[1]
h = torch.zeros(data_len, self.model.emb_size).to(self.device)
batch_probs, uni_prob_list, actual_label_list, states_list, reward_list =[], [], [], [], []
p_action_list, pre_state_list, emb_action_list, op_action_list, actual_label_list, predict_list, ground_truth_list = [], [], [], [], [], [], []
rt_x = torch.zeros(data_len, 1, self.model.emb_size * 2).to(self.device)
for seqi in range(0, seq_len):#序列长度
#debug_print(f"start data_new, c is {data_new}",fuc_name='train_one_step')
ques_h = torch.cat([
self.model.get_ques_representation(q=data_new['cq'][:,seqi], c=data_new['cc'][:,seqi]),
h], dim = 1)#equation4
# d = 64*3 [题目,知识点,h]
flip_prob_emb = self.model.pi_cog_func(ques_h)
m = Categorical(flip_prob_emb)#equation 5 的 f_p
emb_ap = m.sample()#equation 5
emb_p = self.model.cog_matrix[emb_ap,:]#equation 6
h_v, v, logits, rt_x = self.model.obtain_v(q=data_new['cq'][:,seqi], c=data_new['cc'][:,seqi],
h=h, x=rt_x, emb=emb_p)#equation 7
prob = sigmoid_func(logits)#equation 7 sigmoid
out_operate_groundtruth = data_new['cr'][:,seqi].unsqueeze(-1) #获取标签
out_x_groundtruth = torch.cat([
h_v.mul(out_operate_groundtruth.repeat(1, h_v.size()[-1]).float()),
h_v.mul((1-out_operate_groundtruth).repeat(1, h_v.size()[-1]).float())],
dim = 1)#equation9
out_operate_logits = torch.where(prob > 0.5, torch.tensor(1).to(self.device), torch.tensor(0).to(self.device))
out_x_logits = torch.cat([
h_v.mul(out_operate_logits.repeat(1, h_v.size()[-1]).float()),
h_v.mul((1-out_operate_logits).repeat(1, h_v.size()[-1]).float())],
dim = 1)#equation10
out_x = torch.cat([out_x_groundtruth, out_x_logits], dim = 1)#equation11
# print(f"data_new['cr'] is {data_new['cr']}")
ground_truth = data_new['cr'][:,seqi]
# print(f"ground_truth shape is {ground_truth.shape},ground_truth is {ground_truth}")
flip_prob_emb = self.model.pi_sens_func(out_x)##equation12中的f_e
m = Categorical(flip_prob_emb)
emb_a = m.sample()
emb = self.model.acq_matrix[emb_a,:]#equation12 s_t
# print(f"emb_a shape is {emb_a.shape}")
# print(f"emb shape is {emb.shape}")
h = self.model.update_state(h, v, emb, ground_truth.unsqueeze(1))#equation13~14
uni_prob_list.append(prob.detach())
emb_action_list.append(emb_a)#s_t 列表
p_action_list.append(emb_ap)#m_t
states_list.append(out_x)
pre_state_list.append(ques_h)#上一个题目的状态
ground_truth_list.append(ground_truth)
predict_list.append(logits.squeeze(1))
this_reward = torch.where(out_operate_logits.squeeze(1).float() == ground_truth,
torch.tensor(1).to(self.device),
torch.tensor(0).to(self.device))# if condition x else y,这里相当于统计了正确的数量
reward_list.append(this_reward)
prob_tensor = torch.cat(uni_prob_list, dim = 1)
if return_details:
return data_new,emb_action_list,p_action_list,states_list,pre_state_list,reward_list,predict_list,ground_truth_list
else:
return prob_tensor[:,1:]