Source code for pykt.models.iekt_ce

import os
from turtle import forward
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from .que_base_model import QueBaseModel,QueEmb
from torch.distributions import Categorical
from .iekt_utils import mygru,funcs
from pykt.utils import debug_print

[docs]class IEKTNet(nn.Module): def __init__(self, num_q,num_c,emb_size,max_concepts,lamb=40,n_layer=1,cog_levels=10,acq_levels=10,dropout=0,gamma=0.93, emb_type='qc_merge', emb_path="", pretrain_dim=768,device='cpu',train_mode="sample"): super().__init__() self.model_name = "iekt_ce" self.emb_size = emb_size self.concept_num = num_c self.max_concept = max_concepts self.device = device self.emb_type = emb_type self.predictor = funcs(n_layer, emb_size * 5, 1, dropout) self.cog_matrix = nn.Parameter(torch.randn(cog_levels, emb_size * 2).to(self.device), requires_grad=True) self.acq_matrix = nn.Parameter(torch.randn(acq_levels, emb_size * 2).to(self.device), requires_grad=True) self.select_preemb = funcs(n_layer, emb_size * 3, cog_levels, dropout)#MLP self.checker_emb = funcs(n_layer, emb_size * 12, acq_levels, dropout) # self.prob_emb = nn.Parameter(torch.randn(num_q, emb_size).to(self.device), requires_grad=True)#题目表征 self.gamma = gamma self.lamb = lamb self.gru_h = mygru(0, emb_size * 4, emb_size) # self.concept_emb = nn.Parameter(torch.randn(self.concept_num, emb_size).to(self.device), requires_grad=True)#知识点表征 self.sigmoid = torch.nn.Sigmoid() self.que_emb = QueEmb(num_q=num_q,num_c=num_c,emb_size=emb_size,emb_type=self.emb_type,model_name=self.model_name,device=device, emb_path=emb_path,pretrain_dim=pretrain_dim) self.train_mode = train_mode
[docs] def get_ques_representation(self, q, c): """Get question representation equation 3 Args: q (_type_): question ids c (_type_): concept ids Returns: _type_: _description_ """ v = self.que_emb(q,c) return v
[docs] def pi_cog_func(self, x, softmax_dim = 1): return torch.softmax(self.select_preemb(x), dim = softmax_dim)
[docs] def obtain_v(self, q, c, h, x, emb): """_summary_ Args: q (_type_): _description_ c (_type_): _description_ h (_type_): _description_ x (_type_): _description_ emb (_type_): m_t Returns: _type_: _description_ """ #debug_print("start",fuc_name='obtain_v') v = self.get_ques_representation(q,c) predict_x = torch.cat([h, v], dim = 1)#equation4 h_v = torch.cat([h, v], dim = 1)#equation4 为啥要计算两次? prob = self.predictor(torch.cat([ predict_x, emb ], dim = 1))#equation7 return h_v, v, prob, x
[docs] def update_state(self, h, v, emb, operate): """_summary_ Args: h (_type_): rnn的h v (_type_): question 表示 emb (_type_): s_t knowledge acquistion sensitivity operate (_type_): label Returns: next_p_state {}: _description_ """ #equation 13 v_cat = torch.cat([ v.mul(operate.repeat(1, self.emb_size * 2)), v.mul((1 - operate).repeat(1, self.emb_size * 2))], dim = 1)#v_t扩展,分别对应正确的错误的情况 e_cat = torch.cat([ emb.mul((1-operate).repeat(1, self.emb_size * 2)), emb.mul((operate).repeat(1, self.emb_size * 2))], dim = 1)# s_t 扩展,分别对应正确的错误的情况 inputs = v_cat + e_cat#起到concat作用 h_t_next = self.gru_h(inputs, h)#equation14 return h_t_next
[docs] def pi_sens_func(self, x, softmax_dim = 1): return torch.softmax(self.checker_emb(x), dim = softmax_dim)
[docs] def forward(self,data): sigmoid_func = torch.nn.Sigmoid() data_new = data data_len = data_new['cc'].shape[0] seq_len = data_new['cc'].shape[1] h = torch.zeros(data_len, self.emb_size).to(self.device) uni_prob_list = [] rt_x = torch.zeros(data_len, 1, self.emb_size * 2).to(self.device) for seqi in range(0, seq_len):#序列长度 #debug_print(f"start data_new, c is {data_new}",fuc_name='train_one_step') ques_h = torch.cat([ self.get_ques_representation(q=data_new['cq'][:,seqi], c=data_new['cc'][:,seqi]), h], dim = 1)#equation4 # d = 64*3 [题目,知识点,h] flip_prob_emb = self.pi_cog_func(ques_h)#(batch_size,cog_levels) # print(f"flip_prob_emb is {flip_prob_emb},shape is {flip_prob_emb.shape}") if self.train_mode == "sample": m = Categorical(flip_prob_emb)#equation 5 的 f_p emb_ap = m.sample()#equation 5 emb_p = self.cog_matrix[emb_ap,:]#equation 6 elif self.train_mode == "attention": emb_p = flip_prob_emb.matmul(self.cog_matrix)# elif self.train_mode == "argmax": emb_ap = flip_prob_emb.argmax(axis=-1) emb_p = self.cog_matrix[emb_ap,:]#equation 6 h_v, v, logits, rt_x = self.obtain_v(q=data_new['cq'][:,seqi], c=data_new['cc'][:,seqi], h=h, x=rt_x, emb=emb_p)#equation 7 prob = sigmoid_func(logits)#equation 7 sigmoid out_operate_groundtruth = data_new['cr'][:,seqi].unsqueeze(-1) #获取标签 out_x_groundtruth = torch.cat([ h_v.mul(out_operate_groundtruth.repeat(1, h_v.size()[-1]).float()), h_v.mul((1-out_operate_groundtruth).repeat(1, h_v.size()[-1]).float())], dim = 1)#equation9 out_operate_logits = torch.where(prob > 0.5, torch.tensor(1).to(self.device), torch.tensor(0).to(self.device)) out_x_logits = torch.cat([ h_v.mul(out_operate_logits.repeat(1, h_v.size()[-1]).float()), h_v.mul((1-out_operate_logits).repeat(1, h_v.size()[-1]).float())], dim = 1)#equation10 out_x = torch.cat([out_x_groundtruth, out_x_logits], dim = 1)#equation11 # print(f"data_new['cr'] is {data_new['cr']}") ground_truth = data_new['cr'][:,seqi] # print(f"ground_truth shape is {ground_truth.shape},ground_truth is {ground_truth}") flip_prob_emb = self.pi_sens_func(out_x)##equation12中的f_e if self.train_mode == "sample": m = Categorical(flip_prob_emb) emb_a = m.sample() emb = self.acq_matrix[emb_a,:]#equation12 s_t elif self.train_mode == "attention": emb = flip_prob_emb.matmul(self.acq_matrix)# elif self.train_mode == "argmax": emb_a = flip_prob_emb.argmax(axis=-1) emb = self.acq_matrix[emb_a,:] h = self.update_state(h, v, emb, ground_truth.unsqueeze(1))#equation13~14 uni_prob_list.append(prob) y = torch.cat(uni_prob_list, dim = 1) return y
[docs]class IEKTCE(QueBaseModel): def __init__(self, num_q,num_c,emb_size,max_concepts,lamb=40,n_layer=1,cog_levels=10,acq_levels=10,dropout=0,gamma=0.93, emb_type='qid', emb_path="", pretrain_dim=768,device='cpu',seed=0,train_mode = "sample"): model_name = "iekt_ce" super().__init__(model_name=model_name,emb_type=emb_type,emb_path=emb_path,pretrain_dim=pretrain_dim,device=device,seed=seed) self.model = IEKTNet(num_q=num_q,num_c=num_c,lamb=lamb,emb_size=emb_size,max_concepts=max_concepts,n_layer=n_layer,cog_levels=cog_levels,acq_levels=acq_levels,dropout=dropout,gamma=gamma, emb_type=emb_type, emb_path=emb_path, pretrain_dim=pretrain_dim,device=device,train_mode=train_mode) self.model = self.model.to(device) # self.step = 0
[docs] def train_one_step(self,data,process=True): y,data_new = self.predict_one_step(data,return_details=True,process=process) loss = self.get_loss(y,data_new['rshft'],data_new['sm'])#get loss return y,loss
[docs] def predict_one_step(self,data,return_details=False,process=True): data_new = self.batch_to_device(data,process) y = self.model(data_new) y = y[:,1:] if return_details: return y,data_new else: return y