Source code for pykt.models.iekt_utils

import torch
import torch.nn as nn
import torch.nn.functional as F

[docs]def batch_data_to_device(data, device): batch_x, y = data y = y.to(device) seq_num, x = batch_x seq_num = seq_num.to(device) x_len = len(x[0]) for i in range(0, len(x)): for j in range(0, x_len): x[i][j] = x[i][j].to(device) return [[seq_num, x], y]
[docs]class mygru(nn.Module): ''' classifier decoder implemented with mlp ''' def __init__(self, n_layer, input_dim, hidden_dim): super().__init__() this_layer = n_layer self.g_ir = funcsgru(this_layer, input_dim, hidden_dim, 0) self.g_iz = funcsgru(this_layer, input_dim, hidden_dim, 0) self.g_in = funcsgru(this_layer, input_dim, hidden_dim, 0) self.g_hr = funcsgru(this_layer, hidden_dim, hidden_dim, 0) self.g_hz = funcsgru(this_layer, hidden_dim, hidden_dim, 0) self.g_hn = funcsgru(this_layer, hidden_dim, hidden_dim, 0) self.sigmoid = torch.nn.Sigmoid() self.tanh = torch.nn.Tanh()
[docs] def forward(self, x, h): r_t = self.sigmoid( self.g_ir(x) + self.g_hr(h) ) z_t = self.sigmoid( self.g_iz(x) + self.g_hz(h) ) n_t = self.tanh( self.g_in(x) + self.g_hn(h).mul(r_t) ) h_t = (1 - z_t) * n_t + z_t * h return h_t
[docs]class funcsgru(nn.Module): ''' classifier decoder implemented with mlp ''' def __init__(self, n_layer, hidden_dim, output_dim, dpo): super().__init__() self.lins = nn.ModuleList([ nn.Linear(hidden_dim, hidden_dim) for _ in range(n_layer) ]) self.dropout = nn.Dropout(p = dpo) self.out = nn.Linear(hidden_dim, output_dim) self.act = torch.nn.Sigmoid()
[docs] def forward(self, x): for lin in self.lins: x = F.relu(lin(x)) return self.out(self.dropout(x))
[docs]class funcs(nn.Module): ''' classifier decoder implemented with mlp ''' def __init__(self, n_layer, hidden_dim, output_dim, dpo): super().__init__() self.lins = nn.ModuleList([ nn.Linear(hidden_dim, hidden_dim) for _ in range(n_layer) ]) self.dropout = nn.Dropout(p = dpo) self.out = nn.Linear(hidden_dim, output_dim) self.act = torch.nn.Sigmoid()
[docs] def forward(self, x): for lin in self.lins: x = F.relu(lin(x)) return self.out(self.dropout(x))