import torch
import torch.nn as nn
import torch.nn.functional as F
[docs]def batch_data_to_device(data, device):
batch_x, y = data
y = y.to(device)
seq_num, x = batch_x
seq_num = seq_num.to(device)
x_len = len(x[0])
for i in range(0, len(x)):
for j in range(0, x_len):
x[i][j] = x[i][j].to(device)
return [[seq_num, x], y]
[docs]class mygru(nn.Module):
'''
classifier decoder implemented with mlp
'''
def __init__(self, n_layer, input_dim, hidden_dim):
super().__init__()
this_layer = n_layer
self.g_ir = funcsgru(this_layer, input_dim, hidden_dim, 0)
self.g_iz = funcsgru(this_layer, input_dim, hidden_dim, 0)
self.g_in = funcsgru(this_layer, input_dim, hidden_dim, 0)
self.g_hr = funcsgru(this_layer, hidden_dim, hidden_dim, 0)
self.g_hz = funcsgru(this_layer, hidden_dim, hidden_dim, 0)
self.g_hn = funcsgru(this_layer, hidden_dim, hidden_dim, 0)
self.sigmoid = torch.nn.Sigmoid()
self.tanh = torch.nn.Tanh()
[docs] def forward(self, x, h):
r_t = self.sigmoid(
self.g_ir(x) + self.g_hr(h)
)
z_t = self.sigmoid(
self.g_iz(x) + self.g_hz(h)
)
n_t = self.tanh(
self.g_in(x) + self.g_hn(h).mul(r_t)
)
h_t = (1 - z_t) * n_t + z_t * h
return h_t
[docs]class funcsgru(nn.Module):
'''
classifier decoder implemented with mlp
'''
def __init__(self, n_layer, hidden_dim, output_dim, dpo):
super().__init__()
self.lins = nn.ModuleList([
nn.Linear(hidden_dim, hidden_dim)
for _ in range(n_layer)
])
self.dropout = nn.Dropout(p = dpo)
self.out = nn.Linear(hidden_dim, output_dim)
self.act = torch.nn.Sigmoid()
[docs] def forward(self, x):
for lin in self.lins:
x = F.relu(lin(x))
return self.out(self.dropout(x))
[docs]class funcs(nn.Module):
'''
classifier decoder implemented with mlp
'''
def __init__(self, n_layer, hidden_dim, output_dim, dpo):
super().__init__()
self.lins = nn.ModuleList([
nn.Linear(hidden_dim, hidden_dim)
for _ in range(n_layer)
])
self.dropout = nn.Dropout(p = dpo)
self.out = nn.Linear(hidden_dim, output_dim)
self.act = torch.nn.Sigmoid()
[docs] def forward(self, x):
for lin in self.lins:
x = F.relu(lin(x))
return self.out(self.dropout(x))