Source code for pykt.models.utils

import torch
from torch import nn
from torch.nn import Module, Embedding, Linear, Dropout, MaxPool1d, Sequential, ReLU
import copy
import pandas as pd
import numpy as np
import torch
import torch.nn.functional as F


device = "cpu" if not torch.cuda.is_available() else "cuda"

[docs]class transformer_FFN(Module): def __init__(self, emb_size, dropout) -> None: super().__init__() self.emb_size = emb_size self.dropout = dropout self.FFN = Sequential( Linear(self.emb_size, self.emb_size), ReLU(), Dropout(self.dropout), Linear(self.emb_size, self.emb_size), # Dropout(self.dropout), )
[docs] def forward(self, in_fea): return self.FFN(in_fea)
[docs]def ut_mask(seq_len): """ Upper Triangular Mask """ return torch.triu(torch.ones(seq_len,seq_len),diagonal=1).to(dtype=torch.bool).to(device)
[docs]def lt_mask(seq_len): """ Upper Triangular Mask """ return torch.tril(torch.ones(seq_len,seq_len),diagonal=-1).to(dtype=torch.bool).to(device)
[docs]def pos_encode(seq_len): """ position Encoding """ return torch.arange(seq_len).unsqueeze(0).to(device)
[docs]def get_clones(module, N): """ Cloning nn modules """ return nn.ModuleList([copy.deepcopy(module) for i in range(N)])