#!/usr/bin/env python
# coding=utf-8
import pandas as pd
from .utils import sta_infos, write_txt, change2timestamp, replace_text
KEYS = ["Anon Student Id", "KC(Default)", "Questions"]
[docs]def read_data_from_csv(read_file, write_file):
stares= []
df = pd.read_table(read_file, encoding = "utf-8", dtype=str, low_memory=False)
df["Problem Name"] = df["Problem Name"].apply(replace_text)
df["Step Name"] = df["Step Name"].apply(replace_text)
df["Questions"] = df.apply(lambda x:f"{x['Problem Name']}----{x['Step Name']}",axis=1)
ins, us, qs, cs, avgins, avgcq, na = sta_infos(df, KEYS, stares, '~~')
print(f"original interaction num: {ins}, user num: {us}, question num: {qs}, concept num: {cs}, avg(ins) per s: {avgins}, avg(c) per q: {avgcq}, na: {na}")
df["index"] = range(df.shape[0])
df = df.dropna(subset=["Anon Student Id", "Questions", "KC(Default)", "First Transaction Time", "Correct First Attempt"])
df = df[df["Correct First Attempt"].isin([str(0),str(1)])]
df = df[["index", "Anon Student Id", "Questions", "KC(Default)", "First Transaction Time", "Correct First Attempt"]]
df["KC(Default)"] = df["KC(Default)"].apply(replace_text)
ins, us, qs, cs, avgins, avgcq, na = sta_infos(df, KEYS, stares, "~~")
print(f"after drop interaction num: {ins}, user num: {us}, question num: {qs}, concept num: {cs}, avg(ins) per s: {avgins}, avg(c) per q: {avgcq}, na: {na}")
data = []
ui_df = df.groupby(['Anon Student Id'], sort=False)
for ui in ui_df:
u, curdf = ui[0], ui[1]
curdf.loc[:, "First Transaction Time"] = curdf.loc[:, "First Transaction Time"].apply(lambda t: change2timestamp(t))
curdf = curdf.sort_values(by=["First Transaction Time", "index"])
curdf["First Transaction Time"] = curdf["First Transaction Time"].astype(str)
seq_skills = [x.replace("~~", "_") for x in curdf["KC(Default)"].values]
seq_ans = curdf["Correct First Attempt"].values
seq_start_time = curdf["First Transaction Time"].values
seq_problems = curdf["Questions"].values
seq_len = len(seq_ans)
seq_use_time = ["NA"]
assert seq_len == len(seq_problems) == len(seq_skills) == len(seq_ans) == len(seq_start_time)
data.append(
[[u, str(seq_len)], seq_problems, seq_skills, seq_ans, seq_start_time, seq_use_time])
write_txt(write_file, data)
print("\n".join(stares))
return