# _*_ coding:utf-8 _*_
import pandas as pd
from .utils import sta_infos, write_txt,format_list2str,change2timestamp
#ref https://sites.google.com/site/assistmentsdata/datasets/2012-13-school-data-with-affect
KEYS = ["user_id", "skill_id", "problem_id"]
[docs]def read_data_from_csv(read_file, write_file):
stares = []
# load data
df = pd.read_csv(read_file, low_memory=False, usecols=[
"user_id", "skill_id", "start_time", "problem_id", "correct","ms_first_response"])
df['correct'] = df['correct'].apply(int)
ins, us, qs, cs, avgins, avgcq, na = sta_infos(df, KEYS, stares)
print(f"original interaction num: {ins}, user num: {us}, question num: {qs}, concept num: {cs}, avg(ins) per s: {avgins}, avg(c) per q: {avgcq}, na: {na}")
df['tmp_index'] = range(len(df))
df = df.dropna(subset=["user_id", "skill_id", "start_time","problem_id", "correct","ms_first_response"])
df = df[df['correct'].isin([0,1])]#filter responses
# add timestamp and duration
df['start_timestamp'] = df['start_time'].apply(lambda x:change2timestamp(x,hasf='.' in x))
ins, us, qs, cs, avgins, avgcq, na = sta_infos(df, KEYS, stares)
print(f"after drop interaction num: {ins}, user num: {us}, question num: {qs}, concept num: {cs}, avg(ins) per s: {avgins}, avg(c) per q: {avgcq}, na: {na}")
user_inters = []
for user, group in df.groupby(['user_id'], sort=False):
group = group.sort_values(['start_timestamp','tmp_index'])
seq_skills = group['skill_id'].tolist()
seq_ans = group['correct'].tolist()
seq_response_cost = group['ms_first_response'].tolist()
seq_start_time = group['start_timestamp'].tolist()
seq_problems = group['problem_id'].tolist()
seq_len = len(group)
user_inters.append(
[[str(user), str(seq_len)],
format_list2str(seq_problems),
format_list2str(seq_skills),
format_list2str(seq_ans),
format_list2str(seq_start_time),
format_list2str(seq_response_cost)])
write_txt(write_file, user_inters)
print("\n".join(stares))
return