Source code for pykt.preprocess.assist2017_preprocess

#!/usr/bin/env python
# coding=utf-8

import pandas as pd
import numpy as np
from .utils import sta_infos, write_txt, change2timestamp, replace_text

KEYS = ["studentId", "skill", "problemId"]

[docs]def read_data_from_csv(read_file, write_file): stares = [] df = pd.read_csv(read_file, dtype=str, low_memory=False, usecols=['startTime', 'timeTaken', 'studentId', 'skill', 'problemId', 'correct']) ins, us, qs, cs, avgins, avgcq, na = sta_infos(df, KEYS, stares) print(f"original interaction num: {ins}, user num: {us}, question num: {qs}, concept num: {cs}, avg(ins) per s: {avgins}, avg(c) per q: {avgcq}, na: {na}") df["index"] = df.index df = df.dropna(subset=['skill', 'problemId']) #filter invalid record df = df[df["correct"].isin([str(0),str(1)])] ins, us, qs, cs, avgins, avgcq, na = sta_infos(df, KEYS, stares, "~~") print(f"after drop interaction num: {ins}, user num: {us}, question num: {qs}, concept num: {cs}, avg(ins) per s: {avgins}, avg(c) per q: {avgcq}, na: {na}") user_inters = [] for user, group in df.groupby("studentId", sort=False): group = group.sort_values(by=["startTime", "index"], ascending=True) group["startTime"] = group["startTime"].astype(str) seq_problems = group["problemId"].tolist() seq_ans = group["correct"].tolist() seq_start_time = group["startTime"].tolist() seq_skills = group["skill"].tolist() seq_len = len(seq_ans) seq_use_time = group["timeTaken"].tolist() assert seq_len == len(seq_problems) == len(seq_skills) == len(seq_ans) == len(seq_start_time) user_inters.append( [[user, str(seq_len)], seq_problems, seq_skills, seq_ans, seq_start_time, seq_use_time]) write_txt(write_file, user_inters) print("\n".join(stares)) return